Enhanced hydrogen absorption kinetics by introducing fine eutectic and long-period stacking ordered structure in ternary eutectic Mg–Ni–Y alloy

2019 
Abstract A ternary eutectic Mg76.87Ni12.78Y10.35 alloy is selected to achieve a fine eutectic structure with long-period stacking ordered (LPSO) structure, and the corresponding hydrogen storage behavior is investigated. The as-cast Mg76.87Ni12.78Y10.35 alloy is composed of Mg15NiY, Mg2Ni, MgNi4Y and Mg phases. A high density of stacking faults and 14H type LPSO structures form in the Mg15NiY phase. This fine ternary eutectic structure has shown significant improvement in promotion of the activation and following hydrogen absorption kinetics compared with as-cast non-eutectic structure. Pressure-Composition-Temperature (PCT) curves demonstrate two major pressure platforms due to the presence of Mg15NiY and Mg2Ni in our Mg–Ni–Y alloys. Nanosized Mg2NiHx, MgH2 and YHx are in-situ generated from the decomposition of LPSO structure during hydrogenation. The fine ternary eutectic structure and dispersed nanocatalysts from decomposition of LPSO structure synergistically facilitate the activation and hydrogen absorption kinetics of ternary eutectic Mg–Ni–Y alloy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    10
    Citations
    NaN
    KQI
    []