Spectroscopic studies of K2GdF5:Nd3+ single crystals for incredibly strong NIR emission at 864 nm

2021 
Abstract K2GdF5 single crystals doped with 5.0 at.% of Nd3+ ions (K2GdF5:Nd3+) have been synthesized by the hydrothermal technique. The identification and control of the phase purity of synthesized crystals were performed using powder X-ray diffraction analysis. The spectroscopic characteristics of Nd3+ ions in K2GdF5 were analyzed through the absorption and luminescence spectra as well as decay curves. Upconversion luminescence spectra of K2GdF5:Nd3+ in the visible region were recorded under excitation by laser radiation with a wavelength of 785 nm. The nature of the Nd3+- ligand bonding and Judd-Ofelt intensity parameters were estimated using the absorption spectrum. The Ω4/Ω6 ratio was used to predict the structure of the emission spectrum of the K2GdF5:Nd3+ crystal. The application capability of the 4F3/2 → 4I9/2 emission band (864 nm) for laser action in K2GdF5:Nd3+ is proposed based on the radiative parameters such as the experimental branching ratio (βexp), integrated emission cross-section (ΣJJ’) and stimulated emission cross-sections (σλp). The nonradiative energy transfer process between Nd3+ ions in K2GdF5:Nd3+ is also discussed in detail using the Inokuti-Hirayama and Yokota-Tamimoto models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    0
    Citations
    NaN
    KQI
    []