GlcUAβ1-3Galβ1-3Galβ1-4Xyl(2-O-phosphate) is the preferred substrate for chondroitin N-acetylgalactosaminyltransferase-1

2015 
A deficiency in chondroitin N-acetylgalactosaminyltransferase-1 (ChGn-1) was previously shown to reduce the number of chondroitin sulfate (CS) chains, leading to skeletal dysplasias in mice, suggesting that ChGn-1 regulates the number of CS chains for normal cartilage development. Recently, we demonstrated that 2-phosphoxylose phosphatase (XYLP) regulates the number of CS chains by dephosphorylating the Xyl residue in the glycosaminoglycan-protein linkage region of proteoglycans. However, the relationship between ChGn-1 and XYLP in controlling the number of CS chains is not clear. In this study, we for the first time detected a phosphorylated tetrasaccharide linkage structure, GlcUAβ1–3Galβ1–3Galβ1–4Xyl(2-O-phosphate), in ChGn-1−/− growth plate cartilage but not in ChGn-2−/− or wild-type growth plate cartilage. In contrast, the truncated linkage tetrasaccharide GlcUAβ1–3Galβ1–3Galβ1–4Xyl was detected in wild-type, ChGn-1−/−, and ChGn-2−/− growth plate cartilage. Consistent with the findings, ChGn-1 preferentially transferred N-acetylgalactosamine to the phosphorylated tetrasaccharide linkage in vitro. Moreover, ChGn-1 and XYLP interacted with each other, and ChGn-1-mediated addition of N-acetylgalactosamine was accompanied by rapid XYLP-dependent dephosphorylation during formation of the CS linkage region. Taken together, we conclude that the phosphorylated tetrasaccharide linkage is the preferred substrate for ChGn-1 and that ChGn-1 and XYLP cooperatively regulate the number of CS chains in growth plate cartilage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    23
    Citations
    NaN
    KQI
    []