language-icon Old Web
English
Sign In

Powering the internet of things

2014 
Various industry forecasts project that, by 2020, there will be around 50 billion devices connected to the Internet of Things (IoT), helping to engineer new solutions to societal-scale problems such as healthcare, energy conservation, transportation, etc . Most of these devices will be wireless due to the expense, inconvenience, or in some cases, the sheer infeasibility of wiring them. Further, many of them will have stringent size constraints. With no cord for power and limited space for a battery, powering these devices (to achieve several months to possibly years of unattended operation) becomes a daunting challenge. This paper highlights some promising directions for addressing this challenge, focusing on three main building blocks: (a) the design of ultra-low power hardware platforms that integrate computing, sensing, storage, and wireless connectivity in a tiny form factor, (b) the development of intelligent system-level power management techniques, and (c) the use of environmental energy harvesting to make IoT devices self-powered, thus decreasing -- in some cases, even eliminating -- their dependence on batteries. We discuss these building blocks in detail and illustrate case-studies of systems that use them judiciously, including the QUBE wireless embedded platform, which exploits the characteristics of emerging non-volatile memory technologies to seamlessly and efficiently enable long-running computations in systems that experience frequent power loss ( i.e. , intermittently powered systems).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    153
    Citations
    NaN
    KQI
    []