Structure preserving dimensionality reduction for visual object recognition

2018 
Robust object recognition has drawn increasing attention in the field of computer vision and machine learning with fast development in feature extraction and classification techniques, and release of public datasets, such as Caltech datasets, Pascal Visual Object Classes, and ImageNet. Recently, deep learning based object recognition systems have shown significant performance improvements in visual object recognition tasks using innovative learning methodology. However, high dimensional space searching and recognition is time consuming, so performing point and range queries in high dimension is reconsidered for object recognition. This paper proposes optimized dimensionality reduction using structured sparse principle component analysis. The proposed method retains high dimensional feature structures, removes redundant features that do not contribute to similarity, and classifies the query image in a large database. The qualitative and quantitative experimental results, including a comparison with the current state-of-the-art visual object recognition algorithms, verify that the proposed recognition algorithm performs favorably in reducing the query image dimension and number of training images.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    5
    Citations
    NaN
    KQI
    []