Phase evolution during reactive flash sintering of Li6.25Al0.25La3Zr2O12 starting from a chemically prepared powder

2021 
Abstract Reactive flash sintering (RFS) of a chemically prepared multiphase precursor powder was performed to fabricate Li6.25Al0.25La3Zr2O12 (Al-LLZO) ceramics. This approach allowed for obtaining single-phase dense samples in a remarkably short processing time of 30 s, at a furnace temperature of 600 °C, with an electric field of 50 V cm−1 and a current limit of 150 mA mm-2. The ceramics display high bulk conductivity of 0.18 mS cm−1 at room temperature. Furthermore, phase evolution is studied by in-situ X-ray diffraction during: i) conventional heating and ii) RFS under current rate mode. As expected, the intermediate phases progressively dissolved into the Al-LLZO matrix by conventional heating. On the other hand, RFS promoted the growth of the intermediate La2Zr2O7, an effect that was overcome by the thermally driven formation of Al-LLZO at higher temperatures. The observed different reaction pathway suggests that RFS can be used for stabilizing phases that are not thermodynamically favored upon conventional heating.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    2
    Citations
    NaN
    KQI
    []