Coil-stretch-like transition of elastic sheets in extensional flows

2020 
The conformation of a long linear polymer dissolved in fluid and exposed to an extensional flow is well-known to exhibit a "coil-stretch" transition, which for sufficiently long chains can lead to bistability. The present work reports computations indicating that an analogous "compact-stretched" transition arises in the dynamics of a thin elastic sheet. Sheets of nominally circular, square or rectangular shape are simulated in planar and biaxial flows using a finite element method for the sheet conformations and a regularized Stokeslet method for the fluid flow. If a neo-Hookean constitutive model is used for the sheet elasticity, the sheets will stretch without bound once a critical extension rate, as characterized nondimensionally by a capillary number, is exceeded. Nonlinear elasticity, represented with the Yeoh model, arrests the stretching, leading to a highly-stretched steady state once the critical capillary number is exceeded. For all shapes and in both planar and biaxial extension, a parameter regime exists in which both weakly stretched (compact) and strongly stretched states can be found, depending on initial conditions. I.e. this parameter regime displays bistability. While the sheets can transiently display wrinkled shapes, all final shapes in planar and biaxial extension are planar.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    1
    Citations
    NaN
    KQI
    []