Verteporfin inhibits lipopolysaccharide-induced inflammation by multiple functions in RAW 264.7 cells

2019 
Abstract Inflammation is a physiologic response to damage triggered by infection, injury or chemical irritation. Chronic inflammation produces repeated damage to cells and tissues, which can induce a variety of human diseases including cancer. Verteporfin, an FDA approved drug, is used for the treatment of age-related macular degeneration. The anti-tumor effects of verteporfin have been demonstrated by a number of studies. However, fewer studies focus on the anti-inflammatory functions of this drug. In this study, we investigated the anti-inflammatory effects and potential mechanisms of verteporfin. The classic lipopolysaccharide (LPS)-induced inflammation cell model was used. RAW 264.7 cells were pre-treated with verteporfin or vehicle control, followed by LPS stimulation. Verteporfin inhibited IL-6 and TNF-α at mRNA and protein expression levels. This effect was mediated through inhibition of the NF-κB and JAK/STAT pathways. Finally, verteporfin exhibited an anti-inflammation effect by crosslinking of protein such as NF-κB p65, JAK1, JAK2, STAT1, or STAT3 leading to inflammation. Taken together, these results indicate that verteporfin has the potential to be an effective therapeutic agent against inflammatory diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    5
    Citations
    NaN
    KQI
    []