Engineering tocopherol selectivity in α-TTP: a combined in vitro/in silico study.

2012 
We present a combined in vitro/in silico study to determine the molecular origin of the selectivity of -tocopherol transfer protein (-TTP) towards -tocopherol. Molecular dynamics simulations combined to free energy perturbation calculations predict a binding free energy for -tocopherol to -TTP 8.262.13 kcal mol lower than that of -tocopherol. Our calculations show that -tocopherol binds to -TTP in a significantly distorted geometry as compared to that of the natural ligand. Variations in the hydration of the binding pocket and in the protein structure are found as well. We propose a mutation, A156L, which significantly modifies the selectivity properties of -TTP towards the two tocopherols. In particular, our simulations predict that A156L binds preferentially to -tocopherol, with striking structural similarities to the wild-type--tocopherol complex. The affinity properties are confirmed by differential scanning fluorimetry as well as in vitro competitive binding assays. Our data indicate that residue A156 is at a critical position for determination of the selectivity of -TTP. The engineering of TTP mutants with modulating binding properties can have potential impact at industrial level for easier purification of single tocopherols from vitamin E mixtures coming from natural oils or synthetic processes. Moreover, the identification of a -tocopherol selective TTP offers the possibility to challenge the hypotheses for the evolutionary development of a mechanism for -tocopherol selection in omnivorous animals.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    9
    Citations
    NaN
    KQI
    []