Coenzyme Q10 Protect Mice Against Inflammatory Responses During Experimental Cerebral Malaria

2019 
Malaria is a life threatening infectious diseases transmitted by the bite of infected female Anopheles mosquito and responsible for high morbidity and mortality rates. Cerebral malaria is a complex neurological syndrome, whose pathology is mediated by inflammatory processes triggered by the immune system of the host following infection with Plasmodium falciparum. Coenzyme Q10 is an obligatory cofactor in the electron transport chain. The reduced form of Coenzyme Q10 serves as a potent antioxidant additionally; Coenzyme Q10 has been identified as a modulator of gene expression, inflammation and apoptosis. However, the modulatory effects of Coenzyme Q10 Plasmodium berghei ANKA infection process and risk occurrence of experimental cerebral malaria (ECM) have not been determined. The aim of this study was to elucidate the putative impact of oral administration of Coenzyme-Q10 on the initiation or regulation of inflammatory immune response in ECM of C57BL/6 mice during Plasmodium berghei ANKA (PbA) infection. We observed that oral administration of Coenzyme-Q10 both before and after PbA infection significantly hampered infiltration of inflammatory monocytes into the brain. Furthermore, pro-inflammatory cytokine TNF-α, which is associated with inflammation during ECM, was down-regulated in Coenzyme-Q10 administered mice. Remarkably, Coenzyme-Q10 was very effective in inhibiting dendritic cell differentiation. These data collectively demonstrated the immuno-modulatory function of Coenzyme-Q10 on host inflammatory responses during ECM. Keywords: Plasmodium berghei ANKA, Coenzyme Q10, experimental cerebral malaria DOI : 10.7176/JNSR/9-2-05
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []