A nonlinear electromagnetics model of an asymmetrically-driven, low pressure capacitive discharge

2017 
It is well-known that standing waves having radially center-high voltage profiles exist in high frequency driven capacitive discharges. Capacitive sheaths can also nonlinearly excite driving frequency harmonics near the series resonance that can be spatially near-resonant, and therefore enhance the on-axis power deposition. The powered-electrode/plasma/grounded-electrode sandwich structure of an asymmetrically excited cylindrical discharge forms a three electrode system in which both z-symmetric and z-antisymmetric radially propagating wave modes can exist. We develop a nonlinear electromagnetics model for this system with radially- and time-varying sheath widths, incorporating both symmetric and antisymmetric modes, and the plasma skin effect. Waves generated in the electrostatic wave limit are also treated. The discharge is modeled as a uniform density bulk plasma with either homogeneous or Child law sheaths at the electrodes, incorporating their nonlinear voltage versus charge relations. The model incl...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    10
    Citations
    NaN
    KQI
    []