Title Excited state dynamics of liquid water: Insight from the dissociation reaction following two-photon excitation
2007
We use transient absorption spectroscopy to monitor the ionization and dissociation products following two-photon excitation of pure liquid water. The two decay mechanisms occur with similar yield for an excitation energy of 9.3 eV, whereas the major channel at 8.3 eV is dissociation. The geminate recombination kinetics of the H and OH fragments, which can be followed in the transient absorption probed at 267 nm, provide a window on the dissociation dynamics at the lower excitation energy. Modeling the OH geminate recombination indicates that the dissociating H atoms have enough kinetic energy to escape the solvent cage and one or two additional solvent shells. The average initial separation of H and OH fragments is 0.7+-0.2 nm. Our observation suggests that the hydrogen bonding environment does not prevent direct dissociation of an O-H bond in the excited state. We discuss the implications of our measurement for the excited state dynamics of liquid water and explore the role of those dynamics in the ionization mechanism at low excitation energies.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
60
Citations
NaN
KQI