Layer-specific nanophotonic delivery of therapeutic opsin-encoding genes into retina

2021 
Abstract In recent time, gene therapy has proven to be a promising remedial approach for treating visual disorders either by replacement of nonfunctioning gene(s) or by introduction of light sensitive proteins (opsins) as artificial photoreceptors in retinal cells. Conventional viral vector-based gene delivery method is often confronted with limitations due to immunogenetic reaction, unintended non-targeted delivery, non-feasibility of repeated re-dosing due to immunorejection, and complicated manufacturing process, leading to significant roadblock in translational success. In this regard, non-viral delivery provides a safer, simpler and cost-effective alternative. However, most of the non-viral approaches lack spatial and/or cellular specificity and limited by low transfection efficacy and cytotoxicity. Here, we present a minimally invasive, non-viral and clinically translatable safe targeted gene delivery method utilizing functionalized plasmonic gold nanorods (fGNRs, targeted to attach to specific cell types of the organ of interest) and spatially targeted controlled light irradiation. Targeted in-vivo delivery and expression of opsin-encoding gene in bipolar and ganglion cell layers were achieved by use of cell specific fGNRs concurrent with light irradiation. Evaluation of safety and toxicity associated with the transduction of opsin-encoding genes by use of fGNRs and light irradiation were examined by electrophysiology, Optical coherence tomography, intra-ocular pressure and other analytical methods (confocal microscopy, immunohistochemistry). The non-viral light-based opsin-gene delivery provides a safe and effective alternative to viral-vector based gene delivery and holds promise for corrective cell-specific gene therapies for retinal degenerative diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    0
    Citations
    NaN
    KQI
    []