Improved Radial Force Modeling and Rotor Suspension Dynamics Simulation Studies for Double-winding Bearingless Switched Reluctance Motor

2017 
AbstractThe rotor radial force is changed by adjusting the windings current value to control rotor suspension for various kinds of bearingless switched reluctance motor (BSRM). To accomplish the BSRM's suspension control, the radial force analytical model is necessary. Currently the mathematic relationship among radial force, winding currents, and rotor rotation angle has been built for double-winding BSRM, but the rotor eccentricity displacement has not been considered. That is, the existing radial force analytical model only can be used to analyze rotor radial force when rotor shaft is located in the central position. Actually, the rotor radial force is significantly affected by the rotor shaft eccentricity displacement. It is difficult for the bearingless motor to keep the rotor shaft staying in the central position, and the rotor shaft always runs around the central position with an eccentricity displacement. The rotor eccentricity caused by the radial force is considered in the paper to obtain the ai...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    3
    Citations
    NaN
    KQI
    []