Detailed study of an efficient blue laser source by second-harmonic generation in a semimonolithic cavity for the cooling of strontium atoms

2004 
We have constructed a blue laser source consisting of an amplified, grating tuned diode laser that is frequency doubled by a KNbO3 crystal in a compact standing wave cavity and produces as much as 200 mW of internal second-harmonic power. We have analyzed the unusual characteristics of this standing wave cavity to clarify the advantages and disadvantages of this configuration as an alternative to a ring cavity for second-harmonic generation. We emphasize its efficiency and stability and the fact that it has an inherent walk-off compensation, similar to twin crystal configurations. We demonstrate its utility for laser cooling and trapping of earth alkalis by stabilizing the laser to the 461-nm transition of strontium, using a heat pipe, and then forming a magneto-optic trap of strontium from a Zeeman-slowed atomic beam.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    18
    Citations
    NaN
    KQI
    []