Experimental and Numerical Investigations of a Transonic, High Turning Turbine Cascade With a Divergent Endwall

2010 
The paper presents detailed measurements of midspan total pressure loss, secondary flow field, static pressure measurements on airfoil surface at midspan, near hub and near the end walls in a transonic turbine airfoil cascade. Numerous low-speed experimental studies have been carried out to investigate the performance of turbine cascades. Profile and secondary loss correlations have been developed and improved over the years to include the induced incidence and leading edge geometry and to reflect recent trends in turbine design. All of the above investigations have resulted in better understanding of flow field in turbine passages. However, there is still insufficient data on the performance of turbine blades with high turning angles operating at varying incidences angles at transonic Mach numbers. In the present study, measurements were made at +10, 0 and −10 degree incidence angles for a high turning turbine airfoil with 127 degree turning. The exit Mach numbers were varied within a range from 0.6 to 1.1. Additionally, the exit span is increased relative to the inlet span resulting in one end wall diverging from inlet to exit at 13 degree angle. This was done in order to obtain a ratio of inlet Mach number to exit Mach number which is representative to that encountered in real engine and simulates the blade and near end wall loading that is seen in an engine. 3D viscous compressible CFD analysis was carried out in order to compare the results with experimentally obtained values and to further investigate the design and off-design flow characteristics of the airfoil under study. All aerodynamic measurements were compared with CFD analysis and a reasonably good match was observed.Copyright © 2010 by Siemens Energy, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    2
    Citations
    NaN
    KQI
    []