Analysis of the D+→K−π+e+νe decay channel

2011 
Using 347.5  fb^(-1) of data recorded by the BABAR detector at the PEP-II electron-positron collider, 244×10^3 signal events for the D^+ → K^-π^+e^+ν_e decay channel are analyzed. This decay mode is dominated by the K ^*(892)^0 contribution. We determine the K ^*(892)^0 parameters: m_(K^*(892)^0)=(895.4±0.2±0.2)  MeV/c^2, Γ_(K^*(892)^0)=(46.5±0.3±0.2)  MeV/c^2, and the Blatt-Weisskopf parameter r_(BW) =2.1±0.5±0.5  (GeV/c)^-1, where the first uncertainty comes from statistics and the second from systematic uncertainties. We also measure the parameters defining the corresponding hadronic form factors at q^2 = 0 (r_V = ^(V(0))/_(A1(0)) = 1.463 ± 0.017 ± 0.031, r_2 = _(A1(0)) ^(A2(0))= 0.801±0.020±0.020) and the value of the axial-vector pole mass parametrizing the q^2 variation of A_1 and A_2: m_A=(2.63±0.10±0.13)  GeV/c^2. The S-wave fraction is equal to (5.79±0.16±0.15)%. Other signal components correspond to fractions below 1%. Using the D^+ → K^-π^+π^+ channel as a normalization, we measure the D^+ semileptonic branching fraction: B(D^+ → K^-π^+e^+ν_e)=(4.00±0.03±0.04±0.09)×10^(-2), where the third uncertainty comes from external inputs. We then obtain the value of the hadronic form factor A_1 at q^2=0: A_1(0)=0.6200±0.0056±0.0065±0.0071. Fixing the P-wave parameters, we measure the phase of the S wave for several values of the Kπ mass. These results confirm those obtained with Kπ production at small momentum transfer in fixed target experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []