Asymmetrical features of frequency and intensity in the Io‐related Jovian decametric radio sources: Modeling of the Io‐Jupiter system

2010 
[1] Part of the Io-related Jovian decametric radiation (Io-DAM) has been thought to be excited in the auroral cavity formed on field lines downstream of Io. Since source regions of Io-DAM called Io-A and Io-B are located in dusk and dawn local times despite having nearly equal magnetic longitudes, some of the observed asymmetries between Io-A and Io-B events are expected to be due to the difference in the local times. We developed a static Vlasov code, applied it to the Io-Jupiter system, and investigated source structure in order to clarify the ways in which the characteristics of Io-DAM are affected by the plasma in the Jovian ionosphere. Generally there are various solutions which satisfy the quasi-neutrality condition for almost identical boundary conditions. With regard to the solutions with two transition layers, if the altitude of a low-altitude transition layer (LATL) is higher, the voltage at the LATL and the ionospheric proton current density is smaller. Similarly, if the altitude of a high-altitude transition layer (HATL) is higher, the voltage at the HATL and the magnetospheric electron current density is larger. A solution with a smaller ionospheric density for Io-B than for Io-A indicates lower altitude of the LATL for Io-B, which is consistent with the observed high-frequency limit higher for Io-B than for Io-A. This suggests that the high-frequency limit is affected by the local time. It is also expected that the difference in ionospheric proton current densities would be associated with the observed asymmetry of emission intensity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    2
    Citations
    NaN
    KQI
    []