Responses of sediment resistome, virulence factors and potential pathogens to decades of antibiotics pollution in a shrimp aquafarm.

2021 
Aquaculture ecosystem has become a hotspot of antibiotics resistance genes (ARGs) dissemination, owing to the abuse of prophylactic antibiotics. However, it is still unclear how and to what extent ARGs respond to the increasing antibiotic pollution, a trend as expected and as has occurred. Herein, a significant sediment antibiotic pollution gradient was detected along a drainage ditch after decades of shrimp aquaculture. The increasing antibiotic pollution evidently promoted the diversities and tailored the community structures of ARGs, mobile genetic elements (MGEs), virulence factors and pathogens. The profiles of ARGs and MGEs were directly altered by the concentrations of terramycin and sulphadimidine. By contrast, virulence factors were primarily affected by nutrient variables in sediment. The pathogens potentially hosted diverse virulence factors and ARGs. More than half of the detected ARGs subtypes non-linearly responded to increasing antibiotic pollution, as supported by significant tipping points. However, we screened seven antibiotic concentration discriminatory ARGs that could serve as independent variable for quantitatively diagnosing total antibiotic concentration. Co-occurrence analysis depicted that notorious aquaculture pathogens of Vibrio harveyi and V. parahaemolyticus potentially hosted ARGs that confer resistance to multiple antibiotics, while priority pathogens for humankind, e.g., Helicobacter pylori and Staphylococcus aureus, could have harbored redundant virulence factors. Collectively, the significant tipping points and antibiotic concentration-discriminatory ARGs may translate into warning index and diagnostic approach for diagnosing antibiotic pollution. Our findings provided novel insights into the interplay among ARGs, MGEs, pathogens, virulence factors and geochemical variables under the scenario of increasing antibiotic pollution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    3
    Citations
    NaN
    KQI
    []