Solving a Real-Life Distributor’s Pallet Loading Problem

2021 
We consider the distributor’s pallet loading problem where a set of different boxes are packed on the smallest number of pallets by satisfying a given set of constraints. In particular, we refer to a real-life environment where each pallet is loaded with a set of layers made of boxes, and both a stability constraint and a compression constraint must be respected. The stability requirement imposes the following: (a) to load at level k+1 a layer with total area (i.e., the sum of the bottom faces’ area of the boxes present in the layer) not exceeding α times the area of the layer of level k (where α≥1), and (b) to limit with a given threshold the difference between the highest and the lowest box of a layer. The compression constraint defines the maximum weight that each layer k can sustain; hence, the total weight of the layers loaded over k must not exceed that value. Some stability and compression constraints are considered in other works, but to our knowledge, none are defined as faced in a real-life problem. We present a matheuristic approach which works in two phases. In the first, a number of layers are defined using classical 2D bin packing algorithms, applied to a smart selection of boxes. In the second phase, the layers are packed on the minimum number of pallets by means of a specialized MILP model solved with Gurobi. Computational experiments on real-life instances are used to assess the effectiveness of the algorithm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []