Substitution-Induced Structure Evolution and Zn2+/Ga3+ Ordering in “114” Oxides MAZn2Ga2O7 (M = Ca2+, Sr2+; A = Sr2+, Ba2+)

2018 
The “114” oxides LnBa(Co/Fe)4O7+δ represent a new family of materials that exhibits intriguing physical properties, including geometrically frustrated magnetism, oxygen storage, and magnetoelectric couplings. Various chemical substitutions have been conducted to modify their crystal and magnetic structures as well as physical properties. However, the principles beneath the substitution-induced structural evolution and charge/cationic ordering have not yet been understood. Thus, in this contribution, two complete solid solutions of MAZn2Ga2O7 (M = Ca2+, Sr2+; A = Sr2+, Ba2+) were designed, synthesized, and characterized by Rietveld refinements based on high-resolution X-ray diffraction (XRD) and neutron diffraction (ND) data. The structure symmetry of MAZn2Ga2O7 is determined by the cationic size mismatch between M and A cations that can be defined by the tolerance factor t, i.e., symmetry transitions from P63mc (t > 0.87) to P31c (0.87 > t > 0.75) and to Pna21 (t < 0.75) were observed for MAZn2Ga2O7, asso...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    4
    Citations
    NaN
    KQI
    []