Identification of Novel Tumor Suppressor Genes Down-Regulated in Recurrent Nasopharyngeal Cancer by DNA Microarray

2014 
The nasopharyngeal cancer is a common cancer among southern Chinese. In order to better understand molecular mechanism of recurrent nasopharyngeal cancer (rNPC), we used DNA microarray to identify down-regulated tumor suppressed genes (TSGs) in rNPC, and bioinformatics to analyze their chromosomal localizations and molecular functions. Eight non-recurrent nasopharyngeal cancer (nNPC) and six rNPC tissue samples were selected, and Affymetrix Gene1.0 ST chips were used to construct the expression profiling of each tissue sample. Identify the down-regulated TSGs in rNPC by comparing expression profiling data of two type tissue samples. A total of five TSGs were identified to be down-regulated in rNPC. These five TSGs include SERPINF1, TPD52L1, FBLN1, RASSF6, and S100A2, and Signal Log Ratio were −2.2, −2.3, −3.5, −3.9 and −6.9 respectively. Chromosomal localization analysis showed that S100A2, RASSF6, TPD52L1, SERPINF1, and FBLN1 were located on chromosomes 1q, 4q, 6q, 17p and 22q, respectively. Functional analysis showed that SERPINF1 and TPD52L1 belonged to enzyme activity genes, S100A2 and FBLN1 belonged to calcium ion binding genes, RASSF6 belong to protein binding genes. Five TSGs likely to be the candidate TSGs involved in rNPC, and may play important roles in occurrence of rNPC. Chromosomes 1q, 4q, 6q, 17p and 22q may be considered as important region for screening TSGs that may relevant to rNPC. Those genes and chromosomal region need to be further studied.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    6
    Citations
    NaN
    KQI
    []