Similarities in 2- and 6-Line Ferrihydrite Based on Pair Distribution Function Analysis of X-ray Total Scattering

2007 
Iron(III) hydroxides are abundant in near-surface natural environments and play an important role in geochemical processes and the fate of contaminants. The issue of the structure of the common nanophase material ferrihydrite (ferric hydroxide) is controversial and has been debated in the literature for many years without definitive resolution. At least two types of ferrihydrite, the 2-line and 6-line forms, are conventionally recognized. It has been suggested that these forms possess different structures built up by different mixtures of distinct nanophase components. However, traditional crystallographic methods provide depictions of structure that are most sensitive either to short-range order (X-ray absorption) or long-range periodicity (X-ray diffraction or electron diffraction). We used high-energy X-ray total scattering for pair distribution function analysis to observe both the short- and intermediate-range ordering (exceeding similar to 15 angstrom) of synthetic ferrihydrite with three distinct average domain sizes of 2, 3, and 6 nm. We show that there are no significant differences in the underlying structures of these materials and that the differences in the diffraction patterns can be entirely interpreted by variations in the average size of the coherent scattering domains. The average crystallite sizes inferred from the PDF analysis are in good agreement with direct observation by high-resolution transmission electron microscopy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    116
    Citations
    NaN
    KQI
    []