Defect microstructure in single crystal silicon thin films grown at 150°C–350°C by the remote plasma-enhanced chemical vapor deposition

1990 
Defect microstructure in terms of defect density and impurity concentration of epitaxial Si films grown by low temperature Remote Plasma-enchanced Chemical Vapor Deposition (RPCVD) in the temperature range of 150–305° C has been investigated using Transmission Electron Microscopy (TEM), Secondary Ion Mass Spectroscopy (SIMS), Reflection High Energy Electron Diffraction (RHEED) and defect etching/Nomarski microscopy. Defect density in the epitaxial Si films is found to be a strong function of growth temperature in the temperature range under study, indicating that thermal excitation is an important source of energy, in addition to plasma excitation, for driving surface reactions in the RPCVD expitaxial process. Impurity concentrations of H, O and C in the epitaxial films have been determined by SIMS analysis. The trace amounts (∼1 ppm) of oxygen and water vapor in the reactant gas (2%SiH4/He) was identified to be an important source of oxygen in the epitaxial Si films. An oxygen concentration as low as 3 × 1018 cm-3 in the epitaxial Si film grown at 150° C has been achieved through the use of a gas purifier. The higher hydrogen concentration in the films grown at lower temperatures is believed to be due to insufficiently rapid hydrogen desorption from the surface during growth. The results of characterization using TEM and SIMS are discussed to elucidate the atomistic mechanisms of Si epitaxial growth by RPCVD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    14
    Citations
    NaN
    KQI
    []