Collision avoidance for mobile robots based on artificial potential field and obstacle envelope modelling

2016 
Purpose This paper aims to investigate the collision avoidance problem for a mobile robot by constructing an artificial potential field (APF) based on geometrically modelling the obstacles with a new method named the obstacle envelope modelling (OEM). Design/methodology/approach The obstacles of arbitrary shapes are enveloped in OEM using the primitive, which is an ellipse in a two-dimensional plane or an ellipsoid in a three-dimensional space. As the surface details of obstacles are neglected elegantly in OEM, the workspace of a mobile robot is made simpler so as to increase the capability of APF in a clustered environment. Findings Further, a dipole is applied to the construction of APF produced by each obstacle, among which the positive pole pushes the robot away and the negative pole pulls the robot close. Originality/value As a whole, the dipole leads the robot to make a derivation around the obstacle smoothly, which greatly reduces the local minima and trajectory oscillations. Computer simulations are conducted to demonstrate the effectiveness of the proposed approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    18
    Citations
    NaN
    KQI
    []