Flame stabilization mechanisms and shape transitions in a 3D printed, hydrogen enriched, methane/air low-swirl burner

2021 
Abstract Flame shapes and their transitions of premixed hydrogen enriched methane flames in a 3D-printed low-swirl burner are studied using simultaneous OH×CH2O planar laser induced fluorescence and stereoscopic particle image velocimetry. Three different flame shapes are observed, namely bowl-shape, W-shape, and crown-shape. The bowl-shaped flame has its base stabilized through flame-flow velocity balance and its sides stabilized in the inner shear layer. While the bulges of the W-shaped flame rely on a similar stabilization mechanism in the central flow, its outer edges are stabilized by large-scale eddies in the outer shear layer. The crown-shaped flame is also aerodynamically stabilized in the center, but its outer edges are anchored to the burner hardware. At a fixed equivalence ratio, the statistical transitions between flame shapes across test conditions are jointly dominated by hydrogen fraction and bulk velocity. Dynamically, W-to-crown transition is attributed to the upstream propagation and attachment of the flame outer edges.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    2
    Citations
    NaN
    KQI
    []