Hybrid organic (P3HT and MEH-PPV)-inorganic (CuInGaSe2) nanocomposites: charge transfer and photostability studies

2012 
In our work, we demonstrate the use of Copper Indium Gallium Diselenide(CIGSe) nanocrystals as electron acceptor in conducting polymer POLY(3-HEXYLTHIOPHENE)(P3HT) AND POLY(P-PHENYLENE VINYLENE) (PPV). We study the photo-induced charge separation and photostability of CIGSe-conducting polymer nanocomposites for the application of solar cells. CIGSe with P3HT ensures efficient charge transfer process across polymer-CIGSe interface as evident from higher quenching of Photoluminescence(PL) emission and higher value of rates of PL decays(PL/PLi), Stern-Volmer quenching constant K vs and number of accessible fluorophores( F a ), as compared to MEH-PPV polymer. P3HT polymer owing to its crystalline lamellar structure and ordered morphology impart stability to CIGSe composite. Hence superior morphology and photostability as compared to MEH-PPV:CIGSe nanocomposites. P3HT:CIGSe nanocomposites may be exploited as potential active layer in photovoltaic and photoelectrochemical devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []