Optical sensitivity enhancement in grating based micromechanical accelerometer by reducing non-parallelism error

2019 
We report on optical sensitivity enhancement in a grating-based micromechanical accelerometer, which was achieved by reducing the non-parallelism error between the grating and reflected mirror. Based on the multi-slit Fraunhofer diffraction theory, an equivalent optical model is proposed in order to discuss the non-parallelism induced error that is caused by the residual stress in material and fabrication. An integrated fabrication flow with optimized quartz based and silicon based procedure is then presented to improve the parallelism between the grating and mirror, and to realize a hermetic package using silicon islands for the electrical interconnection. We experimentally characterize accelerometers’ behavior by an interferometric beam detecting setup, which reveals the acceleration measurement with a scale factor improvement, noise floor decrease, and thus a bias stability enhancement from 2 mg to 0.35 mg (20 seconds interval, 1 g = 9.8 m/s2).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    2
    Citations
    NaN
    KQI
    []