Higher stability and more predictive fixation with the Femoral Neck System versus Hansson Pins in femoral neck fractures Pauwels II

2020 
Summary Objectives To evaluate the biomechanical performance of the Femoral Neck System (FNS) versus the Hansson Pin System (Hansson Pins) with two parallel pins in a Pauwels II femoral neck fracture model with posterior comminution. Methods Forty-degree Pauwels II femoral neck fractures AO 31-B2.1 with 15° posterior wedge were simulated in fourteen paired fresh-frozen human femora, followed by instrumentation with either FNS or Hansson Pins in pair-matched fashion. Implant positioning was quantified by measuring shortest implant distances to inferior cortex (DI) and posterior cortex (DP) on anteroposterior and axial X-rays, respectively. Biomechanical testing was performed in 20° adduction and 10° flexion with simulated iliopsoas muscle tension. Progressively increasing cyclic loading was applied until construct failure. Interfragmentary femoral head-to-shaft movements were measured with optical motion tracking. Results Cycles to 10° varus deformation were significantly higher for FNS (23007 ​± ​5496) versus Hansson Pins (17289 ​± ​4686), P ​= ​0.027. Cycles to 10° femoral head dorsal tilting (FNS: 12765 ​± ​3425; Hansson Pins: 13357 ​± ​6104) and cycles to 10° rotation around the femoral neck axis (FNS: 24453 ​± ​5073; Hansson Pins: 20185 ​± ​11065) were comparable between the implants, P ​≥ ​0.314. For Hansson Pins, the outcomes for varus deformation and dorsal tilting correlated significantly with DI and DP, respectively (P ​≤ ​0.047), whereas these correlations were not significant for FNS (P ​≥ ​0.310). Conclusions From a biomechanical perspective, by providing superior resistance against varus deformation and performing in a less sensitive way to variations in implant placement, the angular stable Femoral Neck System can be considered as a valid alternative to the Hansson Pin System for the treatment of Pauwels II femoral neck fractures. Level of evidence therapeutic, Level V. The Translational potential of this article The translational potential of this article is to compare the performance of the FNS with Hansson Pins in a AO 31-B2.1 fracture model featuring a 15 posterior wedge to show the implants behavior concerning the dorsal tilting tendency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    7
    Citations
    NaN
    KQI
    []