Adjuvanticity of Plasmid DNA Encoding Cytokines Fused to Immunoglobulin Fc Domains

2006 
Purpose: Plasmid DNAs encoding cytokines enhance immune responses to vaccination in models of infectious diseases and cancer. We compared DNA adjuvants for their ability to enhance immunity against a poorly immunogenic self-antigen expressed by cancer. Experimental Design: DNAs encoding cytokines that affect T cells [interleukin (IL)-2, IL-12, IL-15, IL-18, IL-21, and the chemokine CCL21] and antigen-presenting cells [granulocyte macrophage colony-stimulating factor (GM-CSF)] were compared in mouse models as adjuvants to enhance CD8 + T-cell responses and tumor immunity. A DNA vaccine against a self-antigen, gp100, expressed by melanoma was used in combination with DNA encoding cytokines and cytokines fused to the Fc domain of mouse IgG1 (Ig). Results: We found that ( a ) cytokine DNAs generally increased CD8 + T-cell responses against gp100; ( b ) ligation to Fc domains further enhanced T-cell responses; ( c ) adjuvant effects were sensitive to timing of DNA injection; ( d ) the most efficacious individual adjuvants for improving tumor-free survival were IL-12/Ig, IL-15/Ig, IL-21/Ig, GM-CSF/Ig, and CCL21; and ( e ) combinations of IL-2/Ig + IL-12/Ig, IL-2/Ig + IL-15/Ig, IL-12/Ig + IL-15/Ig, and IL-12/Ig + IL-21/Ig were most active; and ( f ) increased adjuvanticity of cytokine/Ig fusion DNAs was not related to higher tissue levels or greater stability. Conclusions: These observations support the potential of cytokine DNA adjuvants for immunization against self-antigens expressed by cancer, the importance of timing, and the enhancement of immune responses by Fc domains through mechanisms unrelated to increased half-life.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    42
    Citations
    NaN
    KQI
    []