Design and tests for the new CERN-ISOLDE spallation source: an integrated tungsten converter surrounded by an annular UC target operated at 2000 °C

2019 
Abstract The production of high intensity and isobarically pure neutron-rich fission fragments is of high importance for the physics research program of the ISOLDE facility at CERN. This is typically done in a two-step method where a tungsten converter, positioned parallel and below the UC x target, is irradiated with 1.4 GeV protons. This will produce spallation neutrons which irradiate a UC x target producing the isotopes of interest. Currently, the in-target production is limited by the geometrical overlap of the neutron fluence and the target material and suffers from low production yield. In this work, a prototype is proposed where the tungsten converter is positioned in the center of an annular UC x target. FLUKA simulations were conducted to optimize the geometry, maximizing the production of isobarically pure neutron-rich fission fragments which determined that a large diameter target is necessary (5 cm). Thermo-electric ANSYS® simulations were conducted in order to develop a large Ta target oven which can reach 2000 °C and tests were conducted to benchmark the simulations. A prototype design was validated, for ISOLDE operation, with offline tests which shows that the tungsten-graphite-tantalum assembly is fully stable up to 2200 °C.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    1
    Citations
    NaN
    KQI
    []