Hand tracking and affine shape-appearance handshape sub-units in continuous sign language recognition

2010 
We propose and investigate a framework that utilizes novel aspects concerning probabilistic and morphological visual processing for the segmentation, tracking and handshape modeling of the hands, which is used as front-end for sign language video analysis. Our ultimate goal is to explore the automatic Handshape Sub-Unit (HSU) construction and moreover the exploitation of the overall system in automatic sign language recognition (ASLR). We employ probabilistic skin color detection followed by the proposed morphological algorithms and related shape filtering for fast and reliable segmentation of hands and head. This is then fed to our hand tracking system which emphasizes robust handling of occlusions based on forward-backward prediction and incorporation of probabilistic constraints. The tracking is exploited by an Affine-invariant Modeling of hand Shape-Appearance images, offering a compact and descriptive representation of the hand configurations. We further propose that the handshape features extracted via the fitting of this model are utilized to construct in an unsupervised way basic HSUs. We first provide intuitive results on the HSU to sign mapping and further quantitatively evaluate the integrated system and the constructed HSUs on ASLR experiments at the sub-unit and sign level. These are conducted on continuous SL data from the BU400 corpus and investigate the effect of the involved parameters. The experiments indicate the effectiveness of the overall approach and especially for the modeling of handshapes when incorporated in the HSU-based framework showing promising results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    22
    Citations
    NaN
    KQI
    []