Using β-MCM41 composite molecular sieves as supports of bifunctional catalysts for the hydroisomerization of n -heptane

2010 
β-MCM41 composite molecular sieves were hydrothermally synthesized using NaOH treated β zeolite as precursors, and Pt/β-MCM41 bifunctional catalysts were prepared by impregnation. Hβ, desilicated Hβ by NaOH treatment (Dβ), and the physical mixture of Hβ and MCM41 (β+MCM41) were also used as control supports for bifunctional catalysts. All the catalysts were characterized by ICP, XRD, BET, nitrogen adsorption–desorption isotherm and NH3-TPD, and evaluated in the hydroisomerization of n-heptane using an atmospheric fixed bed flow reactor. Dβ, β+MCM41, or β-MCM41 supported Pt catalysts showed higher selectivity to isoheptanes than the counterpart Pt/Hβ did due to the presence of mesopores in addition to the zeolite micropores. Moreover, Pt/β-MCM41 was demonstrated to be a much more selective catalyst among them because the connection between mesopores and micropores accelerated the diffusion of larger molecules of isoheptanes. Under optimal conditions, Pt/β-MCM41 provided a very high selectivity to isomerization of 96.5%, coupled with a considerable high conversion of n-heptane of 56.0%.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    13
    Citations
    NaN
    KQI
    []