Optimal Hybrid Filtering Strategy Using Adaptive Genetic-Fuzzy Logic Control for Harmonics Reduction in a Standalone Micro Hydroelectric Power Plant Coordinated with a PV System

2021 
Micro Hydro Power Plants are a type of power production that uses the force of river flows or waterfalls to generate electricity. The generator generates current waves and harmonic voltage, which are distorted wave disturbances that cause fundamental frequency multiplication. The major goal of this work is to design a reliable, efficient, and innovative harmonic mitigation approach for a stand-alone micro hydroelectric system that is coordinated with a photovoltaic renewable energy system utilising an active power filter. We may pick the active filter highest harmonic to be suppressed using the magnitude information supplied for each harmonic component. A hybrid filtering approach to remove harmonics and a novel MOGA optimization technique are part of the suggested harmonics reduction solution. The goal of this article is to determine the optimum filter for decreasing harmonics in an induction generator. As the harmonic damper, two filters were chosen: a passive filter and an active power filter. The suggested MOGA control method is compared to GA and evaluated on simulated data. In tracking harmonic components and fundamental frequency, the suggested MOGA control system provides high convergence speed and accuracy. It's extremely adaptable, and it can predict changes in the phase angle, amplitude, and fundamental frequency of harmonic components. When compared to the Genetic Algorithm method, it performs better. Simulation results using the SIMULINK/MATLAB simulation tool are delivered to evaluate the efficacy of the suggested active filter system. The impact of harmonic currents on the magnetic flux density is investigated using the rated condition as a reference. It has been established that the time harmonic is a significant element influencing generator performance. At the same time, the impacts of harmonic currents on the generator's eddy current loss, average torque, and torque ripple are investigated, as well as the mechanism of eddy current loss fluctuation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    0
    Citations
    NaN
    KQI
    []