Dysprosium Biomineralization by Penidiella sp. Strain T9

2018 
Biomineralization approaches have gained significant attention as a means to recover rare earth elements from acidic mine drainage and industrial liquid wastes. We isolated an acidophilic fungus, Penidiella sp. strain T9, that accumulates dysprosium (Dy) from acidic model drainage during growth. To develop the application of biomineralization by the strain T9, we elucidated the localization and the chemical structure of biomineralized Dy and performed to establish the labo-scale bioprocess for selective recovery of Dy. High-magnification scanning electron microscopic analysis showed that the strain T9 formed a mineralized Dy (T9-Dy) layer with 1.0 μm thickness over the cell surface, along with some intracellular nano-micro meter-sized Dy particles. X-ray photoelectron spectrometry and X-ray absorption fine structure analyses showed that the chemical composition of T9-Dy corresponded to DyPO4. X-ray diffraction analysis did not yield any spectrum from T9-Dy. Therefore, we concluded that the strain T9 accumulates and mineralizes Dy as an amorphous DyPO4. Dysprosium desorption rate from T9-Dy was 100% using 0.3 M hydrochloric acid. Furthermore, after desorption process, the strain T9 grows again in the new medium and retains the Dy accumulation ability. Thus, the strain T9 has a potential as a bioaccumulator for Dy recovery from acidic drainage through biomineralization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    1
    Citations
    NaN
    KQI
    []