Experimental measurements and mathematical modeling towards quantification of brain swelling stress

2017 
Abstract Traumatic brain injury results in brain tissue swelling which can be a life threatening condition due to skull confinement. While previous efforts successfully measured the exhibited volume change in brain tissue swelling, no data exist to provide information about the exhibited stresses. In this study, confined compression mechanical testing was employed to measure swelling stress in murine brain tissue samples by varying the ionic concentration of the bathing solutions. Subsequently, computer simulations of the experimental protocol were employed to confirm a triphasic mathematical model describing the effect and provide insights into the experimental data. We measured the swelling stress to be in the range of 1.2–6.7 kPa (9.0–50.2 mmHg) depending on the ionic strength of the bathing solution, while a good correspondence was demonstrated among the experimentally measured and simulated responses. Furthermore, the mathematical model featured the osmotic pressure as the primary contributor to the swelling stress, while a parametric analysis showed that the densities of the intracellular fixed charges and of the non-permeable solutes significantly affect the swelling stress.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    4
    Citations
    NaN
    KQI
    []