Well‐Posedness and Global Behavior of the Peskin Problem of an Immersed Elastic Filament in Stokes Flow

2019 
We consider the problem of a one dimensional elastic filament immersed in a two dimensional steady Stokes fluid. Immersed boundary problems in which a thin elastic structure interacts with a surrounding fluid are prevalent in science and engineering, a class of problems for which Peskin has made pioneering contributions. Using boundary integrals, we first reduce the fluid equations to an evolution equation solely for the immersed filament configuration. We then establish local well-posedness for this equation with initial data in low-regularity H\"older spaces. This is accomplished by first extracting the principal linear evolution by a small scale decomposition and then establishing precise smoothing estimates on the nonlinear remainder. Higher regularity of these solutions is established via commutator estimates with error terms generated by an explicit class of integral kernels. Furthermore, we show that the set of equilibria consists of uniformly parametrized circles and prove nonlinear stability of these equilibria with explicit exponential decay estimates, the optimality of which we verify numerically. Finally, we identify a quantity which respects the symmetries of the problem and controls global-in-time behavior of the system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    1
    Citations
    NaN
    KQI
    []