language-icon Old Web
English
Sign In

Maximum Rectilinear Convex Subsets.

2019 
Let P be a set of n points in the plane. We consider a variation of the classical Erdős-Szekeres problem, presenting efficient algorithms with \(O(n^3)\) running time and \(O(n^2)\) space complexity that compute: (1) A subset S of P such that the boundary of the rectilinear convex hull of S has the maximum number of points from P, (2) a subset S of P such that the boundary of the rectilinear convex hull of S has the maximum number of points from P and its interior contains no element of P, (3) a subset S of P such that the rectilinear convex hull of S has maximum area and its interior contains no element of P, and (4) when each point of P is assigned a weight, positive or negative, a subset S of P that maximizes the total weight of the points in the rectilinear convex hull of S.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    3
    Citations
    NaN
    KQI
    []