Genomic evidence for convergent evolution of a key trait underlying divergence in island birds

2017 
Reproductive isolation can be initiated by changes in one or a few key traits that prevent random mating among individuals in a population. During the early stages of speciation, when isolation is often incomplete, there will be a heterogeneous pattern of differentiation across regions of the genome between diverging populations, with loci controlling these key traits appearing the most distinct as a result of strong diversifying selection. In this study, we used Illumina-sequenced ddRAD tags to identify genome-wide patterns of differentiation in three recently-diverged island populations of the Monarcha castaneiventris ycatcher of the Solomon Islands. Populations of this species have diverged in plumage color, and these differences in plumage color, in turn, are used in conspecific recognition and likely important in reproductive isolation. Previous candidate gene sequencing identified point mutations in MC1R and ASIP, both known pigmentation genes, to be associated with the difference in plumage color between islands. Here, we show that background levels of genomic differentiation based on over 70,000 SNPs are extremely low between populations of distinct plumage color, with no loci reaching the level of differentiation found in either candidate gene. Further, we found that a phylogenetic analysis based on these SNPs produced a taxonomy wherein the two melanic populations appear to have evolved convergently, rather than from a single common ancestor, in contrast to their original classification as a single subspecies. Finally, we found evidence that the pattern of low genomic differentiation is the result of both incomplete lineage sorting and gene ow between populations. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    14
    Citations
    NaN
    KQI
    []