Mechanistic basis for motor-driven membrane constriction by dynamin

2020 
The mechano-chemical GTPase dynamin assembles on membrane necks of clathrin-coated vesicles into helical oligomers that constrict and eventually cleave the necks in a GTP-dependent way. It remains not clear whether dynamin achieves this via molecular motor activity and, if so, by what mechanism. Here, we used ensemble kinetics, single-molecule FRET and molecular dynamics simulations to characterize dynamin9s GTPase cycle and determine the powerstroke strength. The results were incorporated into a coarse-grained structural model of dynamin filaments on realistic membrane templates. Working asynchronously, dynamin9s motor modules were found to collectively constrict a membrane tube. Force is generated by motor dimers linking adjacent helical turns and constriction is accelerated by their strain-dependent dissociation. Consistent with experiments, less than a second is needed to constrict a membrane tube to the hemi-fission radius. Thus, a membrane remodeling mechanism relying on cooperation of molecular ratchet motors driven by GTP hydrolysis has been revealed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    0
    Citations
    NaN
    KQI
    []