A superefficient ochratoxin A hydrolase with promising potential for industrial applications.

2021 
As the most seriously controlled mycotoxin produced by Aspergillus spp. and Penicillium spp., ochratoxin A (OTA) results in various toxicological effects and widely contaminates agro-products. Biological detoxification of OTA is the most priority in food and feed industry, but currently available detoxification enzymes are relatively low effectiveness in time and cost. Here we show a superefficient enzyme ADH3 identified from Stenotrophomonas acidaminiphila with a strong ability to transform OTA into non-toxic ochratoxin-α by acting as an amidohydrolase. Recombinant ADH3 (1.2 μg/mL) completely degrades 50 μg/L OTA within 90 seconds, while the availably most efficient OTA hydrolases takes several hours. The kinetic constant showed that rADH3 (Kcat/Km) catalytic efficiency was 56.7-35000 times higher than those of previous hydrolases rAfOTase, rOTase and commercial carboxypeptidase A (CPA). Protein structure-based assay suggested that ADH3 has a preference for hydrophobic residues to form a larger hydrophobic area than other detoxifying enzymes at the cavity of the catalytic sites, and this structure makes the OTA easier to access to catalytic sites. In addition, ADH3 shows considerable temperature adaptability to exert hydrolytic function at the temperature down to 0°C or up to 70°C. Collectively, we report a superefficient OTA detoxifying enzyme with promising potential for industrial applications. IMPORTANCE Ochratoxin A (OTA) can result in various toxicological effects and widely contaminates agro-products and feedstuffs. OTA detoxifications by microbial strains and bio-enzymes are significant to food safety. Although previous studies showed OTA could be transformed through several pathways, the ochratoxin-α pathway is recognized as the most effective one. However, the most currently available enzymes are not efficient enough. Here, a superefficient hydrolase ADH3 which can completely transform 50 μg/L OTA into ochratoxin-α within 90 seconds was screened and characterized. The hydrolase ADH3 shows considerable temperature adaptability (0-70°C) to exert the hydrolytic function. Findings of this study supplied an efficient OTA detoxifying enzyme and predicted the superefficient degradation mechanism which lay a foundation for future industrial applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []