Efficient and Effective Single-Document Summarizations and a Word-Embedding Measurement of Quality.

2017 
Our task is to generate an effective summary for a given document with specific realtime requirements. We use the softplus function to enhance keyword rankings to favor important sentences, based on which we present a number of summarization algorithms using various keyword extraction and topic clustering methods. We show that our algorithms meet the realtime requirements and yield the best ROUGE recall scores on DUC-02 over all previously-known algorithms. We show that our algorithms meet the realtime requirements and yield the best ROUGE recall scores on DUC-02 over all previously-known algorithms. To evaluate the quality of summaries without human-generated benchmarks, we define a measure called WESM based on word-embedding using Word Mover's Distance. We show that the orderings of the ROUGE and WESM scores of our algorithms are highly comparable, suggesting that WESM may serve as a viable alternative for measuring the quality of a summary.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []