Interference-Free Detection of Genetic Biomarkers Using Synthetic Dipole-Facilitated Nanopore Dielectrophoresis

2017 
The motion of polarizable particles in a nonuniform electric field (i.e., dielectrophoresis) has been extensively used for concentration, separation, sorting, and transport of biological particles from cancer cells and viruses to biomolecules such as DNAs and proteins. However, current approaches to dielectrophoretic manipulation are not sensitive enough to selectively target individual molecular species. Here, we describe the application of the dielectrophoretic principle for selective detection of DNA and RNA molecules using an engineered biological nanopore. The key element of our approach is a synthetic polycationic nanocarrier that selectively binds to the target biomolecules, dramatically increasing their dielectrophoretic response to the electric field gradient generated by the nanopore. The dielectrophoretic capture of the nanocarrier–target complexes is detected as a transient blockade of the nanopore ionic current, while any nontarget nucleic acids are repelled from the nanopore by electrophores...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    31
    Citations
    NaN
    KQI
    []