Distinct Repair Activities of Human 7,8-Dihydro-8-oxoguanine DNA Glycosylase and Formamidopyrimidine DNA Glycosylase for Formamidopyrimidine and 7,8-Dihydro-8-oxoguanine
2000
Abstract 7,8-Dihydro-8-oxoguanine (8-oxoG) and 2,6-diamino-4-hydroxyformamidopyrimidine (Fapy) are major DNA lesions formed by reactive oxygen species and are involved in mutagenic and/or lethal events in cells. Both lesions are repaired by human 7,8-dihydro-8-oxoguanine DNA glycosylase (hOGG1) and formamidopyrimidine DNA glycosylase (Fpg) in human andEscherichia coli cells, respectively. In the present study, the repair activities of hOGG1 and Fpg were compared using defined oligonucleotides containing 8-oxoG and a methylated analog of Fapy (me-Fapy) at the same site. Thek cat/K m values of hOGG1 for 8-oxoG and me-Fapy were comparable, and this was also the case for Fpg. However, the k cat/K m values of hOGG1 for both lesions were approximately 80-fold lower than those of Fpg. Analysis of the Schiff base intermediate by NaBH4trapping implied that lower substrate affinity and slower hydrolysis of the intermediate for hOGG1 than Fpg accounted for the difference. hOGG1 and Fpg showed distinct preferences of the base opposite 8-oxoG, with the activity differences being 19.8- (hOGG1) and 12-fold (Fpg) between the most and least preferred bases. Surprisingly, such preferences were almost abolished and less than 2-fold for both enzymes when me-Fapy was a substrate, suggesting that, unlike 8-oxoG, me-Fapy is not subjected to paired base-dependent repair. The repair efficiency of me-Fapy randomly incorporated in M13 DNA varied at the sequence level, but orders of preferred and unpreferred repair sites were quite different for hOGG1 and Fpg. The distinctive activities of hOGG1 and Fpg including enzymatic parameters (k cat/K m), paired base, and sequence context effects may originate from the differences in the inherent architecture of the DNA binding domain and catalytic mechanism of the enzymes.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
43
References
109
Citations
NaN
KQI