Thermal Characterization and Sensor Applications of One-Dimensional Nanostructures Employing Microelectromechanical Systems

2005 
We review the recent progress in thermal characterization and sensor applications of one-dimensional nanostructures employing microelectromechanical system (MEMS) devices. It was found by thermal measurements that the thermal conductance of a single wall carbon nanotube (SWCNT) was very close to the ballistic thermal conductance of a 1-nm-diameter SWCNT without signatures of phonon−phonon Umklapp scattering, a high thermoelectric figure of merit can potentially be obtained in bismuth telluride (BixTe1-x) nanowires with an optimized atomic ratio of x, and the thermal conductivity of metal oxide nanobelts was suppressed by increased phonon-boundary scattering. We further suggest that dielectrophoresis and other directed-assembly methods can be used for the large-scale integration of nanowires with MEMS to obtain ultrasensitive, stable, and selective sensor systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    40
    Citations
    NaN
    KQI
    []