The FOXSI-3 sounding rocket experiment (Conference Presentation)

2018 
The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment aims to investigate fundamental questions about the high-energy Sun through direct imaging and spectroscopy of hard X-rays. The experiment utilizes Wolter-I type nested hard X-ray mirrors and fine-pitch semiconductor detectors, which are separated by a 2m focal length. Tol date, FOXSI has had two successful flights, on 2012 November 02 and 2014 December 11, demonstrating that the technology can measure small-scale energy releases (microflares and aggregated nanoflares) from the solar corona. The third flight for FOXSI is scheduled for August 2018. Significant improvements have been made on the FOXSI instrumentation, including upgraded optic modules with more nested mirror shells; specially designed collimators to mitigate the number of single bounce photons (ie., ghost rays) reaching the focal plane detector; and fine-pitch double-sided CdTe strip detectors to replace some of the Si-based hard X-ray detectors for better efficiency for hard X-rays. Furthermore, a CMOS based soft X-ray (SXR) instrument, “Phoenix”, will be added to FOXSI-3 by replacing one hard X-ray detector with a photon-counting SXR sensor. This will enable evaluation of the Sun via imaging spectroscopy simultaneously over a large X-ray energy range covering soft to hard X-rays. This paper will describe the overall instrument design of the FOXSI-3 experiment, which will be sensitive to solar soft and hard X-rays in the 1 – 20 keV range, as well as give a summary of insightful results and lessons from the first two flights. Possible observations for FOXSI-3 will also be discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []