for 2D X-Ray Spectroscopic Imaging and Compton Scattering

2009 
Multi-Linear Silicon Drift Detectors (ML-SDDs) are a recent evolution of silicon drift detectors, in which the signal electrons generated by the interaction are confined within parallel drifting columns and transported towards point-like anodes by the electrostatic field. ML-SDDs can be operated both in integrate-readout and in free-running mode and are able to provide 2-D position sensing capability combined with spectroscopic energy-resolution. Therefore ML-SDDs open the way to time-resolved imaging and spectroscopy of X-rays and Compton electrons in addition to charged particle tracking. The excellent energy resolution and the relatively small Doppler broadening of silicon makes a ML-SDD detector an ideal candidate to reconstruct the original location of the gamma-ray with sub-millimeter position resolution. Novel designs of 1 cm 2 and 3 cm 2 ML-SDDs have been carried out and first detectors prototypes were produced at the Halbleiterlabor of the Max Planck Institut in cooperation with PNSensor GmbH. In this paper we will discuss the main detector performance in terms of position, energy and time resolution.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []