DNA walker-mediated biosensor for target-triggered triple-mode detection of Vibrio parahaemolyticus.

2021 
Abstract Herein, we have constructed a target-triggered and DNA walker-mediated biosensor with triple signal (BTS) outputs mode for sensitive and reliable detection of pathogenic bacteria. Vibrio parahaemolyticus (VP) being the detection target model, the aptamer conformational changes induced by VP have been designed to activate the DNA walk on the modifiable and conductive surface of Fe3O4 nanoparticles to generate triple signal outputs, including electrochemiluminescence (ECL), fast scan cyclic voltammetry (FSCV) and fluorescent pixel counting (FLPC). Limits of quantification (LOQ) of VP were as low as 1 CFU⋅mL−1 by ECL with a linear range of 1–106 CFU⋅mL−1, 1 CFU⋅mL−1 by FSCV with a linear range of 1–106 CFU⋅mL−1, and 10 CFU⋅mL−1 by FLPC with a linear range of 10–107 CFU⋅mL−1 respectively, all squared correlation coefficients R2 being > 0.99. In addition, optical and electrochemical results, signal-on and signal-off results, electrode phase and solution phase results could be mutually verified by integrating of multiple detection techniques in one biosensor, greatly improving the accuracy and reliability. Therefore, the designed BTS has provided a powerful strategy for pathogenic bacteria detection considering its high detection sensitivity and accuracy, exhibiting great potential in food safety, water quality and biological contamination.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    3
    Citations
    NaN
    KQI
    []