Robust penalty-weighted deblurring via kernel adaption using single image

2016 
Abstract Image blind deconvolution is well known as a challenging, ill-posed problem due to the uncertainty of the blur kernel and the noise condition. Based on our observations, blind deconvolution algorithms tend to generate disconnected and noisy blur kernels, which would yield a serious ringing effect in the restored image if the input image is noisy. Therefore, there is still room for further improvement, especially for noisy images captured under poor illumination conditions. In this paper, we propose a robust blind deconvolution algorithm by adopting a penalty-weighted anisotropic diffusion prior. On one hand, the anisotropic diffusion prior effectively eliminates the discontinuity in the blur kernel caused by the noisy input image during the process of kernel estimation. On the other hand, the weighted penalizer reduces the speckle noise of the blur kernel, thus improving the quality of the restored image. The effectiveness of the proposed algorithm is verified by both synthetic and real images with defocused or motion blur.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []