An Improved Particle Swarm Optimization Adopting Chaotic Sequences for Nonconvex Economic Dispatch Problems

2007 
This paper presents a new and efficient approach for solving the economic dispatch (ED) problems with nonconvex cost functions using particle swarm optimization (PSO). Although the PSO is easy to implement and has been empirically shown to perform well on many optimization problems, it may easily get trapped in a local optimum when solving problems with multiple local optima and heavily constrained. This paper proposes an improved PSO, which combines the conventional PSO with chaotic sequences (CPSO). The chaotic sequences combined with the linearly decreasing inertia weights in PSO are devised to improve the global searching capability and escaping from local minimum. To verify the feasibility of the proposed method, numerical studies have been performed for two different nonconvex ED test systems and its results are compared with those of previous works. The proposed CPSO algorithm outperforms other state-of-the-art algorithms in solving ED problems, which consider valve-point and multi-fuels with valve-point effects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []